z-logo
open-access-imgOpen Access
Direct Synthesis of Cycloalkanes from Diols and Secondary Alcohols or Ketones Using a Homogeneous Manganese Catalyst
Author(s) -
Akash Kaithal,
LisaLou Gracia,
Clément Camp,
Elsje Alessandra Quadrelli,
Walter Leitner
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b08832
Subject(s) - chemistry , cycloheptane , catalysis , cyclopentane , organic chemistry , cycloalkane , cyclohexane , ketone , cyclooctane , alkane , manganese , homogeneous catalysis
A method for the synthesis of substituted cycloalkanes was developed using diols and secondary alcohols or ketones via a cascade hydrogen borrowing sequence. A non-noble and air-stable manganese catalyst (2 mol %) was used to perform this transformation. Various substituted 1,5-pentanediols (3-4 equiv) and substituted secondary alcohols (1 equiv) were investigated to prepare a collection of substituted cyclohexanes in a diastereoselective fashion. Similarly, cyclopentane, cyclohexane, and cycloheptane rings were constructed from substituted 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol, and sterically hindered ketones following a (4 + 1), (5 + 1), and (6 + 1) strategy, respectively. This reaction provides an atom economic methodology to construct two C-C bonds at a single carbon center generating high-value cycloalkanes from readily available alcohols as feedstock using an earth-abundant metal catalyst.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom