z-logo
open-access-imgOpen Access
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations
Author(s) -
Michael E. Wall,
Gaetano Calabrò,
C Bayly,
David L. Mobley,
Gregory L. Warren
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b13613
Subject(s) - chemistry , molecular dynamics , neutron diffraction , solvation , crystallography , crystal structure , neutron scattering , supercell , water model , chemical physics , electron density , ice crystals , force field (fiction) , molecule , scattering , computational chemistry , electron , physics , optics , thunderstorm , organic chemistry , quantum mechanics , meteorology
To compare ordered water positions from experiment with those from molecular dynamics (MD) simulations, a number of MD models of water structure in crystalline endoglucanase were calculated. The starting MD model was derived from a joint X-ray and neutron diffraction crystal structure, enabling the use of experimentally assigned protonation states. Simulations were performed in the crystalline state, using a periodic 2 × 2 × 2 supercell with explicit solvent. Water X-ray and neutron scattering density maps were computed from MD trajectories using standard macromolecular crystallography methods. In one set of simulations, harmonic restraints were applied to bias the protein structure toward the crystal structure. For these simulations, the recall of crystallographic waters using strong peaks in the MD water electron density was very good, and there also was substantial visual agreement between the boomerang-like wings of the neutron scattering density and the crystalline water hydrogen positions. An unrestrained simulation also was performed. For this simulation, the recall of crystallographic waters was much lower. For both restrained and unrestrained simulations, the strongest water density peaks were associated with crystallographic waters. The results demonstrate that it is now possible to recover crystallographic water structure using restrained MD simulations but that it is not yet reasonable to expect unrestrained MD simulations to do the same. Further development and generalization of MD water models for force-field development, macromolecular crystallography, and medicinal chemistry applications is now warranted. In particular, the combination of room-temperature crystallography, neutron diffraction, and crystalline MD simulations promises to substantially advance modeling of biomolecular solvation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here