z-logo
open-access-imgOpen Access
Coordination Chemistry of a Molecular Pentafoil Knot
Author(s) -
Liang Zhang,
Alexander J. Stephens,
JeanFrançois Lemonnier,
Lucian Pirvu,
Íñigo J. VitóricaYrezábal,
Christopher Robinson,
David A. Leigh
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b12548
Subject(s) - chemistry , isothermal titration calorimetry , crystallography , zinc , ligand (biochemistry) , coordination sphere , coordination complex , metal , titration , metal ions in aqueous solution , stereochemistry , inorganic chemistry , crystal structure , organic chemistry , biochemistry , receptor
The binding of Zn(II) cations to a pentafoil (5 1 ) knotted ligand allows the synthesis of otherwise inaccessible metalated molecular pentafoil knots via transmetalation, affording the corresponding "first-sphere" coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good yields (≥85%). Each of the knot complexes was characterized by mass spectrometry, the diamagnetic (zinc) knot complex was characterized by 1 H and 13 C NMR spectroscopy, and the zinc, cobalt, and nickel pentafoil knots afforded single crystals whose structures were determined by X-ray crystallography. Lehn-type circular helicates generally only form with tris-bipy ligand strands and Fe(II) (and, in some cases, Ni(II) and Zn(II)) salts, so such architectures become accessible for other metal cations only through the use of knotted ligands. The different metalated knots all exhibit "second-sphere" coordination of a single chloride ion within the central cavity of the knot through CH···Cl - hydrogen bonding and electrostatic interactions. The chloride binding affinities were determined in MeCN by isothermal titration calorimetry, and the strength of binding was shown to vary over 3 orders of magnitude for the different metal-ion-knotted-ligand second-sphere coordination complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom