Oligosaccharides Self-Assemble and Show Intrinsic Optical Properties
Author(s) -
Yang Yu,
Soeun Gim,
Dongyoon Kim,
Zohar A. Ar,
Ehud Gazit,
Peter H. Seeberger,
Martina Delbianco
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b11882
Subject(s) - chemistry , monomer , self assembly , nanostructure , nanotechnology , fluorescence , cellulose , chitin , polymer , organic chemistry , chitosan , quantum mechanics , materials science , physics
Self-assembling peptides and oligonucleotides have given rise to synthetic materials with several applications in nanotechnology. Aggregation of synthetic oligosaccharides into well-defined architectures has not been reported even though natural polysaccharides, such as cellulose and chitin, are key structural components of biomaterials. Here, we report that six synthetic oligosaccharides, ranging from dimers to hexamers, self-assemble into nanostructures of varying morphologies and emit within the visible spectrum in an excitation-dependent manner. Well-defined differences in chain length, monomer modification, and aggregation methods yield glycomaterials with distinct shapes and properties. The excitation-dependent fluorescence in a broad range within the visible spectrum illustrates their potential for use in optical devices and imaging applications. We anticipate that our systematic approach of studying well-defined synthetic oligosaccharides will form the foundation of our understanding of carbohydrate interactions in nature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom