Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles
Author(s) -
Franco KingChi Leung,
Tobias van den Enk,
Takashi Kajitani,
Jiawen Chen,
Marc C. A. Stuart,
Jeroen Kuipers,
Takanori Fukushima,
Ben L. Feringa
Publication year - 2018
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b10778
Subject(s) - supramolecular chemistry , chemistry , counterion , nanostructure , nanofiber , nanotechnology , ion , nanoscopic scale , chemical physics , crystallography , crystal structure , materials science , organic chemistry
Three-dimensional organized unidirectionally aligned and responsive supramolecular structures have much potential in adaptive materials ranging from biomedical components to soft actuator systems. However, to control the supramolecular structure of these stimuli responsive, for example photoactive, materials and control their actuation remains a major challenge. Toward the design of "artificial muscles", herein, we demonstrate an approach that allows hierarchical control of the supramolecular structure, and as a consequence its photoactuation function, by electrostatic interaction between motor amphiphiles (MA) and counterions. Detailed insight into the effect of various ions on structural parameters for self-assembly from nano- to micrometer scale in water including nanofiber formation and nanofiber aggregation as well as the packing structure, degree of alignment, and actuation speed of the macroscopic MA strings prepared from various metal chlorides solution, as determined by electronic microscopy, X-ray diffraction, and actuation speed measurements, is presented. Macroscopic MA strings prepared from calcium and magnesium ions provide a high degree of alignment and fast response photoactuation. By the selection of metal ions and chain length of MAs, the macroscopic MA string structure and function can be controlled, demonstrating the potential of generating multiple photoresponsive supramolecular systems from an identical molecular structure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom