z-logo
open-access-imgOpen Access
Photochemical Resolution of a Thermally Inert Cyclometalated Ru(phbpy)(N–N)(Sulfoxide)+ Complex
Author(s) -
Lucien N. Lameijer,
Corjan van de Griend,
Samantha L. Hopkins,
Anne-Geert Volbeda,
Sven H. C. Askes,
Maxime A. Siegler,
Sylvestre Bonnet
Publication year - 2018
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b10264
Subject(s) - chemistry , ruthenium , sulfoxide , acetonitrile , phenazine , diastereomer , ligand (biochemistry) , photochemistry , dimethylformamide , bipyridine , phenanthroline , medicinal chemistry , stereochemistry , crystallography , organic chemistry , solvent , catalysis , crystal structure , receptor , biochemistry
In this work a photosubstitution strategy is presented that can be used for the isolation of chiral organometallic complexes. A series of five cyclometalated complexes Ru(phbpy)(N-N)(DMSO-κS)](PF 6 ) ([1]PF 6 -[5]PF 6 ) were synthesized and characterized, where Hphbpy = 6'-phenyl-2,2'-bipyridyl, and N-N = bpy (2,2'-bipyridine), phen (1,10-phenanthroline), dpq (pyrazino[2,3- f][1,10]phenanthroline), dppz (dipyrido[3,2- a:2',3'- c]phenazine, or dppn (benzo[ i]dipyrido[3,2- a,2',3'- c]phenazine), respectively. Due to the asymmetry of the cyclometalated phbpy - ligand, the corresponding [Ru(phbpy)(N-N)(DMSO-κS)] + complexes are chiral. The exceptional thermal inertness of the Ru-S bond made chiral resolution of these complexes by thermal ligand exchange impossible. However, photosubstitution by visible light irradiation in acetonitrile was possible for three of the five complexes ([1]PF 6 -[3]PF 6 ). Further thermal coordination of the chiral sulfoxide ( R)-methyl p-tolylsulfoxide to the photoproduct [Ru(phbpy)(phen)(NCMe)]PF 6 , followed by reverse phase HPLC, led to the separation and characterization of the two diastereoisomers of [Ru(phbpy)(phen)(MeSO(C 7 H 7 ))]PF 6 , thus providing a new photochemical approach toward the synthesis of chiral cyclometalated ruthenium(II) complexes. Full photochemical, electrochemical, and frontier orbital characterization of the cyclometalated complexes [1]PF 6 -[5]PF 6 was performed to explain why [4]PF 6 and [5]PF 6 are photochemically inert while [1]PF 6 -[3]PF 6 perform selective photosubstitution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom