z-logo
open-access-imgOpen Access
Feedback-Induced Temporal Control of “Breathing” Polymersomes To Create Self-Adaptive Nanoreactors
Author(s) -
Hailong Che,
Shoupeng Cao,
Jan C. M. van Hest
Publication year - 2018
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b02387
Subject(s) - polymersome , nanoreactor , chemistry , catalysis , nanotechnology , chemical engineering , biophysics , organic chemistry , amphiphile , polymer , copolymer , materials science , engineering , biology
Here we present the development of self-regulated "breathing" polymersome nanoreactors that show temporally programmable biocatalysis induced by a chemical fuel. pH-sensitive polymersomes loaded with horseradish peroxidase (HRP) and urease were developed. Addition of an acidic urea solution ("fuel") endowed the polymersomes with a transient size increase and permeability enhancement, driving a temporal "ON" state of the HRP enzymatic catalysis; subsequent depletion of fuel led to shrinking of the polymersomes, resulting in the catalytic "OFF" state. Moreover, the nonequilibrium nanoreactors could be reinitiated several cycles as long as fuel was supplied. This feedback-induced temporal control of catalytic activity in polymersome nanoreactors provides a platform for functional nonequilibrium systems as well as for artificial organelles with precisely controlled adaptivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom