Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue That Catalyzes Nonenzymatic RNA Primer Extension
Author(s) -
Chun Pong Tam,
Lijun Zhou,
Albert C. Fahrenbach,
Wen Zhang,
Travis Walton,
Jack W. Szostak
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.7b11623
Subject(s) - chemistry , phosphodiester bond , primer extension , primer (cosmetics) , stereochemistry , nucleotide , guanosine , imidazole , rna , biochemistry , organic chemistry , gene
We report the synthesis of guanosine 5'-(4-methylimidazolyl)phosphonate (ICG), the third member of a series of nonhydrolyzable nucleoside 5'-phosphoro-2-methylimidazolide (2-MeImpN) analogues designed for mechanistic studies of nonenzymatic RNA primer extension. The addition of a 2-MeImpN monomer to a primer is catalyzed by the presence of a downstream activated monomer, yet the three nonhydrolyzable analogues do not show catalytic effects under standard mildly basic primer extension conditions. Surprisingly, ICG, which has a pK a similar to that of 2-MeImpG, is a modest catalyst of nonenzymatic primer extension at acidic pH. Here we show that ICG reacts with 2-MeImpC to form a stable 5'-5'-imidazole-bridged guanosine-cytosine dinucleotide, with both a labile nitrogen-phosphorus and a stable carbon-phosphorus linkage flanking the central imidazole bridge. Cognate RNA primer-template complexes react with this GC-dinucleotide by attack of the primer 3'-hydroxyl on the activated N-P side of the 5'-5'-imidazole bridge. These observations support the hypothesis that 5'-5'-imidazole-bridged dinucleotides can bind to cognate RNA primer-template duplexes and adopt appropriate conformations for subsequent phosphodiester bond formation, consistent with our recent mechanistic proposal that the formation of activated 5'-5'-imidazolium-bridged dinucleotides is responsible for 2-MeImpN-driven primer extension.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom