z-logo
open-access-imgOpen Access
Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue That Catalyzes Nonenzymatic RNA Primer Extension
Author(s) -
Chun Pong Tam,
Lijun Zhou,
Albert C. Fahrenbach,
Wen Zhang,
Travis Walton,
Jack W. Szostak
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.7b11623
Subject(s) - chemistry , phosphodiester bond , primer extension , primer (cosmetics) , stereochemistry , nucleotide , guanosine , imidazole , rna , biochemistry , organic chemistry , gene
We report the synthesis of guanosine 5'-(4-methylimidazolyl)phosphonate (ICG), the third member of a series of nonhydrolyzable nucleoside 5'-phosphoro-2-methylimidazolide (2-MeImpN) analogues designed for mechanistic studies of nonenzymatic RNA primer extension. The addition of a 2-MeImpN monomer to a primer is catalyzed by the presence of a downstream activated monomer, yet the three nonhydrolyzable analogues do not show catalytic effects under standard mildly basic primer extension conditions. Surprisingly, ICG, which has a pK a similar to that of 2-MeImpG, is a modest catalyst of nonenzymatic primer extension at acidic pH. Here we show that ICG reacts with 2-MeImpC to form a stable 5'-5'-imidazole-bridged guanosine-cytosine dinucleotide, with both a labile nitrogen-phosphorus and a stable carbon-phosphorus linkage flanking the central imidazole bridge. Cognate RNA primer-template complexes react with this GC-dinucleotide by attack of the primer 3'-hydroxyl on the activated N-P side of the 5'-5'-imidazole bridge. These observations support the hypothesis that 5'-5'-imidazole-bridged dinucleotides can bind to cognate RNA primer-template duplexes and adopt appropriate conformations for subsequent phosphodiester bond formation, consistent with our recent mechanistic proposal that the formation of activated 5'-5'-imidazolium-bridged dinucleotides is responsible for 2-MeImpN-driven primer extension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom