z-logo
open-access-imgOpen Access
On-Surface Synthesis of Porous Carbon Nanoribbons from Polymer Chains
Author(s) -
Maximilian Ammon,
Tim Sander,
Sabine Maier
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.7b04783
Subject(s) - chemistry , dehydrogenation , covalent bond , phenylene , scanning tunneling microscope , polymer , polymerization , aryl , polymer chemistry , photochemistry , conformational isomerism , crystallography , nanotechnology , organic chemistry , molecule , materials science , alkyl , catalysis
We demonstrate the on-surface synthesis of porous carbon nanoribbons on Ag(111) via a preprogrammed isomerization of conformationally flexible polymer chains followed by dehydrogenation reactions using thermal annealing. The carbon chains are fabricated by polymerization of prochiral 1,3,5-tris(3-bromophenyl)benzene (mTBPB) directly on the surface using an Ullmann-type reaction. At room temperature, mTBPB partially self-assembles in halogen-bonded 2D networks, which transform into organometallic chains and rings after debromination. The chain and ring formation is facilitated by conformational switching from a C 3h o C s symmetry of mTBPB via rotation of m-phenylene units. The high conformational selectivity toward C s -conformers is templated by the twofold coordination to Ag adatoms. After thermally induced covalent-linking through aryl-aryl coupling, well-ordered nanoporous chains are created. Finally, the rotation of single phenylene units in combination with dehydrogenation cross-linking reactions within the polymer chains leads to the unexpected formation of porous carbon nanoribbons. We unveil the reaction mechanism in a low-temperature scanning tunneling microscopy study and demonstrate that the rotation of m-phenylene units is a powerful design tool to promote structural control in the synthesis of cyclic covalent organic nanostructures on metal surfaces.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom