Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane
Author(s) -
Timothy A. Barendt,
Liliana Ferreira,
Igor Marques,
Vı́tor Félix,
Paul D. Beer
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.7b04295
Subject(s) - diimide , chemistry , perylene , catenane , ion , solvent , solvent polarity , dynamics (music) , photochemistry , polymer chemistry , organic chemistry , molecule , physics , acoustics
A novel dynamic [3]catenane consisting of a large four-station central macrocycle which incorporates a bay tetrachloro-functionalized perylene diimide (PDI) unit and two triazolium anion-binding motifs, mechanically bonded with two smaller isophthalamide-containing macrocycles, is constructed using an anion template synthetic methodology. Proton NMR, electronic absorption, and fluorescence emission spectroscopies together with molecular dynamics simulations are used to investigate the anion recognition- and solvent-dependent dynamic properties of the higher-order mechanically interlocked molecule. Importantly, unprecedented solvent-dependent and anion-binding-induced circumrotatory motion in a hetero[3]catenane system is demonstrated where the exotic dual rotary switching behavior provides a unique and sophisticated mechanism for optical anion sensing in competitive protic organic and aqueous-organic media.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom