
L-Edge X-ray Absorption Spectroscopic Investigation of {FeNO}6: Delocalization vs Antiferromagnetic Coupling
Author(s) -
James J. Yan,
Margarita A. Gonzales,
Pradip K. Mascharak,
Britt Hedman,
Keith O. Hodgson,
Edward I. Solomon
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b11260
Subject(s) - chemistry , delocalized electron , electronic structure , crystallography , x ray absorption spectroscopy , antibonding molecular orbital , molecular orbital , atomic orbital , valence (chemistry) , ligand (biochemistry) , absorption spectroscopy , computational chemistry , electron , molecule , biochemistry , physics , receptor , organic chemistry , quantum mechanics
NO is a classic non-innocent ligand, and iron nitrosyls can have different electronic structure descriptions depending on their spin state and coordination environment. These highly covalent ligands are found in metalloproteins and are also used as models for Fe-O 2 systems. This study utilizes iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction multiplet model, to directly experimentally probe the electronic structure of the S = 0 {FeNO} 6 compound [Fe(PaPy 3 )NO] 2+ (PaPy 3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and the S = 0 [Fe(PaPy 3 )CO] + reference compound. This method allows separation of the σ-donation and π-acceptor interactions of the ligand through ligand-to-metal and metal-to-ligand charge-transfer mixing pathways. The analysis shows that the {FeNO} 6 electronic structure is best described as Fe III -NO(neutral), with no localized electron in an NO π* orbital or electron hole in an Fe dπ orbital. This delocalization comes from the large energy gap between the Fe-NO π-bonding and antibonding molecular orbitals relative to the exchange interactions between electrons in these orbitals. This study demonstrates the utility of L-edge XAS in experimentally defining highly delocalized electronic structures.