RNA Scanning of a Molecular Machine with a Built-in Ruler
Author(s) -
Hye Ran Koh,
Mary Anne Kidwell,
Jennifer A. Doudna,
Sua Myong
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b10387
Subject(s) - linker , chemistry , rna , biophysics , dna , rna silencing , molecular machine , nanotechnology , biological system , crystallography , rna interference , biochemistry , gene , biology , materials science , computer science , operating system
Advanced single-molecule techniques have enabled tracking of nanometer-scale movements of DNA and RNA motor proteins in real time. Previously, we reported an ATP-independent diffusion of transactivation response RNA binding protein (TRBP) on dsRNA, yet the mechanistic details remain elusive. Using single-molecule fluorescence assays, we demonstrate that the diffusion activity of TRBP is coordinated by an independent movement of two subdomains, dsRBD1 and dsRBD2, in which the diffusion distance is determined by the length of a flexible linker domain that connects the two dsRBDs. When the linker is shortened, the diffusion distance is reduced proportionally, suggesting a ruler-like function of the linker domain. Diffusion stalls upon encountering a physical barrier in the form of an RNA:DNA hybrid segment or bulky secondary structures, indicating a dsRNA scanning mode of TRBP. The results display a plausible mechanism of TRBP in scanning for pre-miRNA or pre-siRNA as proper substrates for the RNAi pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom