Building Nanowires from Micelles: Hierarchical Self-Assembly of Alternating Amphiphilic Glycopolypeptide Brushes with Pendants of High-Mannose Glycodendron and Oligophenylalanine
Author(s) -
Yijiang Liu,
Yufei Zhang,
Zheyu Wang,
Jue Wang,
Kongchang Wei,
Guosong Chen,
Ming Jiang
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b05044
Subject(s) - amphiphile , micelle , chemistry , conjugate , self assembly , nanowire , branching (polymer chemistry) , template , nanotechnology , copolymer , mannose , combinatorial chemistry , organic chemistry , materials science , polymer , aqueous solution , mathematical analysis , mathematics
Mimicking the diverse glyco-conjugate structures in nature is always the dream of scientists. Right now, hierarchical self-assembled structures of natural conjugates of peptides and sugars could not easily be achieved via linear glycopolypeptide with monosaccharides as attachments. In this work, by using a series of well-designed alternating amphiphilic glycopolypeptide brushes (AAGBs) with pendants of glycodendrons and short peptides, various self-assembled morphologies were achieved, including nanowires, nanoribbon, and compound micelles mainly depending on the number ratio of the sugar units to the amino acids species (S/F). Among these morphologies, nanowire attracted our great attention. TEM studies demonstrated that it is formed via a hierarchical self-assembly, i.e., a series of successive processes, including micellization, micelles alignment forming nanofilament, branching of the nanofilaments by micelles, and finally nanowire formation. As far as we know, such hierarchical self-assembly process with high complexity has not been observed in literature for glycopolypeptides even polypeptides, which will deepen our understanding on self-assembly mechanism of natural glyco-conjugates and expand the library of biomimetic materials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom