CH Bond Activation of Methane by a Transient η2-Cyclopropene/Metallabicyclobutane Complex of Niobium
Author(s) -
Chen Li,
Chiara Dinoi,
Yannick Coppel,
Michel Étienne
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b07859
Subject(s) - cyclopropene , chemistry , mesitylene , methane , intramolecular force , isoprene , photochemistry , reductive elimination , medicinal chemistry , oxidative addition , computational chemistry , stereochemistry , organic chemistry , benzene , catalysis , polymer , copolymer
This study challenges the problem of the activation of a CH bond of methane by soluble transition metal complexes. High pressure solution NMR, isotopic labeling studies, and kinetic analyses of the degenerate exchange of methane in the methyl complex [Tp(Me2)NbCH3(c-C3H5)(MeCCMe)] (1) are reported. Stoichiometric methane activation by the mesitylene complex [Tp(Me2)Nb(CH2-3,5-C6H3Me2)(c-C3H5) (MeCCMe)] (2) giving 1 is also realized. Evidence is provided that these reactions proceed via an intramolecular abstraction of a β-H of the cyclopropyl group to form either methane or mesitylene from 1 or 2, respectively, yielding the transient unsaturated η(2)-cyclopropene/metallabicyclobutane intermediate [Tp(Me2)Nb(η(2)-c-C3H4) (MeCCMe)] A. This is followed by its mechanistic reverse 1,3-CH bond addition of methane yielding the product.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom