Exploiting Metalloporphyrins for Selective Living Radical Polymerization Tunable over Visible Wavelengths
Author(s) -
Sivaprakash Shanmugam,
Jiangtao Xu,
Cyrille Boyer
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b05274
Subject(s) - chemistry , polymerization , photochemistry , chain transfer , reversible addition−fragmentation chain transfer polymerization , xanthate , visible spectrum , radical polymerization , photopolymer , atom transfer radical polymerization , polymer chemistry , polymer , organic chemistry , optoelectronics , materials science
The use of metalloporphyrins has been gaining popularity particularly in the area of medicine concerning sensitizers for the treatment of cancer and dermatological diseases through photodynamic therapy (PDT), and advanced materials for engineering molecular antenna for harvesting solar energy. In line with the myriad functions of metalloporphyrins, we investigated their capability for photoinduced living polymerization under visible light irradiation over a broad range of wavelengths. We discovered that zinc porphyrins (i.e., zinc tetraphenylporphine (ZnTPP)) were able to selectively activate photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of trithiocarbonate compounds for the polymerization of styrene, (meth)acrylates and (meth)acrylamides under a broad range of wavelengths (from 435 to 655 nm). Interestingly, other thiocarbonylthio compounds (dithiobenzoate, dithiocarbamate and xanthate) were not effectively activated in the presence of ZnTPP. This selectivity was likely attributed to a specific interaction between ZnTPP and trithiocarbonates, suggesting novel recognition at the molecular level. This interaction between the photoredox catalyst and trithiocarbonate group confers specific properties to this polymerization, such as oxygen tolerance, enabling living radical polymerization in the presence of air and also ability to manipulate the polymerization rates (kp(app) from 1.2-2.6 × 10(-2) min(-1)) by varying the visible wavelengths.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom