Modular Degradable Hydrogels Based on Thiol-Reactive Oxanorbornadiene Linkers
Author(s) -
Cody J. Higginson,
Seung Yeon Kim,
Miguel Peláez-Fernández,
Alberto FernándezNieves,
M. G. Finn
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b02708
Subject(s) - chemistry , self healing hydrogels , thiol , modular design , combinatorial chemistry , polymer chemistry , organic chemistry , programming language , computer science
Oxanorbornadiene dicarboxylate (OND) reagents are potent Michael acceptors, the adducts of which undergo fragmentation by retro-Diels-Alder reaction at rates that vary with the substitution pattern on the OND moiety. Rapid conjugate addition between thiol-terminated tetravalent PEG and multivalent ONDs yielded self-supporting hydrogels within 1 min at physiological temperature and pH. Erosion of representative hydrogel formulations occurred with predictable and pH-independent rates on the order of minutes to weeks. These materials could be made non-degradable by epoxidation of the OND linkers without slowing gelation. Hydrogels prepared with OND linkers of equal valence had comparable physical properties, as determined by equilibrium swelling behavior, indicating similar internal network structure. Diffusion and release of entrained cargo varied with both the rate of degradation of PEG-OND hydrogels and the hydrodynamic radius of the entrained species. These results highlight the utility of OND linkers in the preparation of degradable network materials with potential applications in sustained release.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom