z-logo
open-access-imgOpen Access
Photoswitching Behavior of Flavin–Inhibitor Complex in a Nonphotocatalytic Flavoenzyme
Author(s) -
Bo Zhuang,
Marten H. Vos
Publication year - 2022
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.2c04763
Subject(s) - chemistry , flavin group , stereochemistry , combinatorial chemistry , computational chemistry , biochemistry , enzyme
An unprecedented photoswitching phenomenon of flavin-inhibitor complexes in a flavoenzyme was revealed by femtosecond transient absorption spectroscopy. The vast majority of flavoenzymes, including monomeric sarcosine oxidase (MSOX), perform non-light-driven physiological functions. Yet, the participation of flavin cofactors in photoinduced electron transfer reactions is widespread. MSOX catalyzes the oxidative demethylation of sarcosine; methylthioacetate (MTA) is a substrate analog inhibitor that forms a complex with MSOX exhibiting intense absorption bands over the whole visible range due to flavin-MTA charge transfer (CT) interactions. Here, we demonstrate that upon excitation, these CT interactions vanish during a barrierless high quantum yield reaction in ∼300 fs. The initial complex subsequently geminately re-forms in a few nanoseconds near room temperature in a thermally activated way with an activation energy of 28 kJ/mol. We attribute this hitherto undocumented process to a well-defined photoinduced isomerization of MTA in the active site, as corroborated by experiments with the heavier ligand methylselenoacetate. Photoisomerization phenomena involving CT transitions may be further explored in photocatalytic and photoswitching applications of flavoenzymes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom