z-logo
open-access-imgOpen Access
Anionic Species Regulate Chemical Storage in Nanometer Vesicles and Amperometrically Detected Exocytotic Dynamics
Author(s) -
Xiulan He,
Andrew G. Ewing
Publication year - 2022
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.2c00581
Subject(s) - chemistry , vesicle , nanometre , nanotechnology , chemical engineering , membrane , biochemistry , materials science , engineering
Hofmeister effects have often been ignored in living organisms, although they affect the activity and functions of biological molecules. Herein, amperometry has been applied to show that the vesicular content, dynamics of exocytosis and vesicles opening, depend on the anionic species treatment. Compared to 100 μM Cl - treated chromaffin cells, a similar number of catecholamine molecules is released after chaotropic anions (ClO 4 - and SCN - ) treatment, even though the vesicular catecholamine content significantly increases, suggesting a lower release fraction. In addition, there are opposite effects on the dynamics of vesicles release (shorter duration) and vesicle opening (longer duration) for chaotropic anions treated cells. Our results show anion-dependent vesicle release, vesicle opening, and vesicular content, providing understanding of the pharmacological and pathological processes induced by inorganic ions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom