z-logo
open-access-imgOpen Access
Following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion
Author(s) -
Lucy L. Fillbrook,
Jan-Philipp Günther,
G. Majer,
Daniel J. O’Leary,
William S. Price,
Hal Van Ryswyk,
Peer Fischer,
Jonathon E. Beves
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c09455
Subject(s) - chemistry , paramagnetism , diffusion , relaxation (psychology) , catalysis , chemical physics , ion , copper , molecule , cycloaddition , computational chemistry , thermodynamics , organic chemistry , psychology , social psychology , physics , quantum mechanics
The reported changes in self-diffusion of small molecules during reactions have been attributed to "boosted mobility". We demonstrate the critical role of changing concentrations of paramagnetic ions on nuclear magnetic resonance (NMR) signal intensities, which led to erroneous measurements of diffusion coefficients. We present simple methods to overcome this problem. The use of shuffled gradient amplitudes allows accurate diffusion NMR measurements, even with time-dependent relaxation rates caused by changing concentrations of paramagnetic ions. The addition of a paramagnetic relaxation agent allows accurate determination of both diffusion coefficients and reaction kinetics during a single experiment. We analyze a copper-catalyzed azide-alkyne cycloaddition "click" reaction, for which boosted mobility has been claimed. With our methods, we accurately measure the diffusive behavior of the solvent, starting materials, and product and find no global increase in diffusion coefficients during the reaction. We overcome NMR signal overlap using an alternative reducing agent to improve the accuracy of the diffusion measurements. The alkyne reactant diffuses slower as the reaction proceeds due to binding to the copper catalyst during the catalytic cycle. The formation of this intermediate was confirmed by complementary NMR techniques and density functional theory calculations. Our work calls into question recent claims that molecules actively propel or swim during reactions and establishes that time-resolved diffusion NMR measurements can provide valuable insight into reaction mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom