Nickel(II)-Catalyzed Addition of Aryl and Heteroaryl Boroxines to the Sulfinylamine Reagent TrNSO: The Catalytic Synthesis of Sulfinamides, Sulfonimidamides, and Primary Sulfonamides
Author(s) -
Pui Kin Tony Lo,
Michael C. Willis
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c08052
Subject(s) - chemistry , catalysis , aryl , reagent , primary (astronomy) , combinatorial chemistry , nickel , fluoride , organic chemistry , hydrolysis , trichloroisocyanuric acid , inorganic chemistry , alkyl , physics , astronomy
We report a redox-neutral Ni(II)-catalyzed addition of (hetero)aryl boroxines to N -sulfinyltritylamine (TrNSO). The reactions use a catalyst generated from the combination of commercial, air-stable NiCl 2 ·(glyme) and a commercially available bipyridine ligand, and deliver sulfinamide products. The scope of the reaction is established using a sulfonimidamide synthesis, in which the initially formed sulfinamides undergo oxidative chlorination with the inexpensive and safe chlorinating agent, trichloroisocyanuric acid (TCCA), to produce sulfonimidoyl chlorides as key intermediates. These are combined in situ with a range of amines to deliver sulfonimidamides. The sulfonimidoyl chlorides can also be elaborated into primary sulfonamides via hydrolysis, and sulfonimidoyl fluorides via treatment with fluoride. These transformations are all achieved using one-pot procedures. Unprotected, primary sulfinamides are also available. For larger-scale reactions, the catalyst loading can be reduced to 1 mol %.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom