z-logo
open-access-imgOpen Access
Radical Aryl Migration from Boron to Carbon
Author(s) -
Dinghai Wang,
Christian MückLichtenfeld,
Constantin G. Daniliuc,
Armido Studer
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c04217
Subject(s) - chemistry , aryl , aryl radical , heteroatom , radical , moiety , intramolecular force , medicinal chemistry , boron , reagent , organic chemistry , ring (chemistry) , alkyl
Radical aryl migration reactions represent a unique type of organic transformations that involve the intramolecular migration of an aryl group from a carbon or heteroatom to a C- or heteroatom-centered radical through a spirocyclic intermediate. Various elements, including N, O, Si, P, S, Sn, Ge, and Se, have been reported to participate in radical aryl migrations. However, radical aryl migration from a boron center has not been reported to date. In this communication, radical 1,5-aryl migration from boron to carbon in aryl boronate complexes is presented. C-radicals readily generated through radical addition onto alkenyl aryl boronate complexes are shown to engage in 1,5-aryl migration reactions to provide 4-aryl-alkylboronic esters. As boronate complexes can be generated in situ by the reaction of alkenylboronic acid esters with aryl lithium reagents, the aryl moiety is readily varied, providing access to a series of arylated products starting from the same alkenylboronic acid ester via divergent chemistry. Reactions proceed with high diastereoselectivity under mild conditions, and also the analogous 1,4-aryl shifts are feasible. The suggested mechanism is supported by DFT calculations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here