Illuminating Life’s Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules
Author(s) -
Nicholas J. Green,
Jianfeng Xu,
John D. Sutherland
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c01839
Subject(s) - chemistry , abiogenesis , extant taxon , biomolecule , astrobiology , abiotic component , nanotechnology , ecology , evolutionary biology , physics , biochemistry , materials science , biology
Solar radiation is the principal source of energy available to Earth and has unmatched potential for the synthesis of organic material from primordial molecular building blocks. As well as providing the energy for photochemical synthesis of (proto)biomolecules of interest in origins of life-related research, light has also been found to often provide remarkable selectivity in these processes, for molecules that function in extant biology and against those that do not. As such, light is heavily implicated as an environmental input on the nascent Earth that was important for the emergence of complex yet selective chemical systems underpinning life. Reactivity and selectivity in photochemical prebiotic synthesis are discussed, as are their implications for origins of life scenarios and their plausibility, and the future directions of this research.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom