Pd–Pt Tesseracts for the Oxygen Reduction Reaction
Author(s) -
Sheng Chen,
Jiankang Zhao,
Hongyang Su,
Hongliang Li,
Huili Wang,
Zhenpeng Hu,
Jun Bao,
Jie Zeng
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c12282
Subject(s) - chemistry , catalysis , oxygen , nanocrystal , oxygen reduction reaction , oxygen reduction , etching (microfabrication) , chemical engineering , crystallography , nanotechnology , electrochemistry , organic chemistry , electrode , materials science , layer (electronics) , engineering
Hollow frame structures are of special interest in the realm of catalysis since they hold only ridges and hollow interiors, enabling the accessibility of active sites to the most extent. Herein, we prepared Pd-Pt hollow frame structures composed of double-shell cubes linked by body diagonals as an efficient catalyst toward the oxygen reduction reaction (ORR), inspired by the 4D analogue of a cube, denoted as a tesseract. The etching process involves the selective removal of Pd atoms and the subsequent rearrangement of the remaining Pd and Pt atoms. The successful preparation of Pd-Pt tesseracts via etching lies in the selection of Pd/Pt ratio in the initial Pd-Pt nanocubes. With various ratios of Pd-Pt nanocubes as templates, we obtained Pd-Pt octapods, tesseracts, and nanoframes, respectively. During the ORR, Pd-Pt tesseracts exhibited the highest mass activity of 1.86 A mg -1 P among these Pd-Pt nanocrystals. On the basis of mechanistic studies, the high activity of Pd-Pt tesseracts derived from the optimal oxygen adsorption energy due to the facet effect and composition effect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom