2D-Covalent Organic Frameworks with Interlayer Hydrogen Bonding Oriented through Designed Nonplanarity
Author(s) -
Sampath B. Alahakoon,
Kui Tan,
Haardik Pandey,
Shashini D. Diwakara,
Gregory T. McCandless,
Daniel I. Grinffiel,
Alejandra Durand-Silva,
Timo Thonhauser,
Ronald A. Smaldone
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c03409
Subject(s) - chemistry , hydrogen bond , van der waals force , crystallinity , covalent bond , steric effects , infrared spectroscopy , crystallography , monomer , non covalent interactions , imine , amide , chemical physics , computational chemistry , molecule , stereochemistry , organic chemistry , polymer , catalysis
We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a nonplanar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and -2, respectively, for their surface areas, pore sizes, and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom