Solid-State 17O NMR and Computational Studies of C-Nitrosoarene Compounds
Author(s) -
Gang Wu,
Jianfeng Zhu,
Xin Mo,
Ruiyao Wang,
Victor V. Terskikh
Publication year - 2010
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja909656w
Subject(s) - chemistry , oxygen 17 , quadrupole , tensor (intrinsic definition) , anisotropy , coupling constant , chemical shift , nuclear magnetic resonance spectroscopy , solid state nuclear magnetic resonance , density functional theory , molecule , analytical chemistry (journal) , crystallography , computational chemistry , nuclear magnetic resonance , stereochemistry , organic chemistry , atomic physics , physics , geometry , mathematics , quantum mechanics , particle physics
We report the first solid-state (17)O NMR determination of the (17)O quadrupole coupling (QC) tensor and chemical shift (CS) tensor for four (17)O-labeled C-nitrosoarene compounds: p-[(17)O]nitroso-N,N-dimethylaniline ([(17)O]NODMA), SnCl(2)(CH(3))(2)([(17)O]NODMA)(2), ZnCl(2)([(17)O]NODMA)(2), and [(17)O]NODMA.HCl. The (17)O quadrupole coupling constants (C(Q)) observed in these C-nitrosoarene compounds are on the order of 10-15 MHz, among the largest values found to date for organic compounds. The (17)O CS tensor in these compounds exhibits remarkable sensitivity toward the nitroso bonding scheme with the chemical shift anisotropy (delta(11) - delta(33)) ranging from just 350 ppm in [(17)O]NODMA.HCl to over 2800 ppm in [(17)O]NODMA. This latter value is among the largest (17)O chemical shift anisotropies reported in the literature. These extremely anisotropic (17)O NMR interactions make C-nitrosoarene compounds excellent test cases that allow us to assess the detection limit of solid-state (17)O NMR. Our results suggest that, at 21.14 T, solid-state (17)O NMR should be applicable to all oxygen-containing organic functional groups. We also show that density functional theory (DFT) calculations can reproduce reasonably well the experimental (17)O QC and CS tensors for these challenging molecules. By combining quantum chemical calculations with experimental solid-state (17)O NMR results, we are able to determine the (17)O QC and CS tensor orientations in the molecular frame of reference for C-nitrosoarenes. We present a detailed analysis illustrating how magnetic field-induced mixing between individual molecular orbitals (MOs) contributes to the (17)O shielding tensor in C-nitrosoarene compounds. We also perform a Townes-Dailey analysis for the observed (17)O QC tensors and show that (17)O CS and QC tensors are intrinsically related through the pi bond order of the N horizontal lineO bond. Furthermore, we are able for the first time to examine the parallelism between individual (17)O and (15)N CS tensor components in C-nitrosoarenes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom