z-logo
open-access-imgOpen Access
Journey from Mo−Mo Quadruple Bonds to Quintuple Bonds
Author(s) -
Yi-Chou Tsai,
Hong-Zhang Chen,
Chie-Chieh Chang,
JenShiang K. Yu,
GeneHsiang Lee,
Yu Wang,
Ting-Shen Kuo
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja905035f
Subject(s) - chemistry , quadruple bond , crystallography , tetrahydrofuran , bond length , molybdenum , metal , stereochemistry , bond order , crystal structure , inorganic chemistry , solvent , organic chemistry
Heating K(4)Mo(2)Cl(8) and 2 equiv of Li[RC(NDipp)(2)] (R = H, Ph; Dipp = 2,6-i-Pr(2)C(6)H(3)) in tetrahydrofuran (THF) at 60 degrees C gives two paddlewheel type quadruply bonded dimolybdenum complexes, Mo(2)(mu-Cl)[Cl(2)Li(OEt(2))][mu-eta(2)-RC(N-2,6-i-Pr(2)C(6)H(3))(2)](2) (R = H (1), Ph (2)). The Mo-Mo bond lengths of 1 and 2 are 2.0875(4) and 2.0756(8) A, respectively, indicating typical Mo-Mo quadruple bonds. Reduction of 1 and 2 by two electrons results in the isolation of their corresponding Mo-Mo quintuple bonded complexes, Mo(2)[mu-eta(2)-RC(N-2,6-i-Pr(2)C(6)H(3))(2)](2) (R = H (3), Ph (4)), and the Mo-Mo bond lengths dramatically decrease to 2.0187(9) A (3) and 2.0157(4) A (4), a consequence of the formation of the second delta bond and representing the shortest metal-metal bonds beyond the first row elements. The Mo-Mo quintuple bonding characters are corroborated by DFT calculations at the level of BP86/def2-TZVP and BP86/def2-TZVPP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom