z-logo
open-access-imgOpen Access
Hydrogen Bonding Controls Excited-State Decay of the Photoactive Yellow Protein Chromophore
Author(s) -
Martial BoggioPasqua,
Michael A. Robb,
Gerrit Groenhof
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja904932x
Subject(s) - photoisomerization , chromophore , chemistry , isomerization , photochemistry , excited state , hydrogen bond , double bond , chemical physics , molecule , atomic physics , organic chemistry , physics , catalysis
We have performed excited-state dynamics simulations of a Photoactive Yellow Protein chromophore analogue in water. The results of the simulations demonstrate that in water the chromophore predominantly undergoes single-bond photoisomerization, rather than double-bond photoisomerization. Despite opposite charge distributions in the chromophore, excited-state decay takes place very efficiently from both single- and double-bond twisted minima in water. Radiationless decay is facilitated by ultrafast solvent reorganization, which stabilizes both minima by specific hydrogen bond interactions. Changing the solvent to the slightly more viscous D(2)O leads to an increase of the excited-state lifetime. Together with previous simulations, the present results provide a complete picture of the effect of the protein on the photoisomerization of the chromophore in PYP: the positive guanidinium group of Arg52 favors double-bond isomerization over single-bond isomerization by lowering the barrier for double-bond isomerization, while the hydrogen bonds with Tyr42 and Glu46 enhance deactivation from the double-bond twisted minimum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom