Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions
Author(s) -
Jennifer M. Heemstra,
David R. Liu
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja904712t
Subject(s) - chemistry , nucleobase , peptide nucleic acid , nucleic acid , ap site , combinatorial chemistry , nucleic acid analogue , reductive amination , monomer , acylation , base pair , oligonucleotide , peptide , dna , biochemistry , nucleic acid thermodynamics , organic chemistry , base sequence , dna damage , polymer , catalysis
The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom