Effect of Highly Fluorinated Amino Acids on Protein Stability at a Solvent-Exposed Position on an Internal Strand of Protein G B1 Domain
Author(s) -
HsienPo Chiu,
Bashkim Kokona,
Robert Fairman,
Richard P. Cheng
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja903631h
Subject(s) - chemistry , amino acid , position (finance) , solvent , domain (mathematical analysis) , stereochemistry , biophysics , organic chemistry , biochemistry , biology , mathematical analysis , mathematics , finance , economics
Highly fluorinated amino acids have been used to stabilize helical proteins for potential application in various protein-based biotechnologies. However, many proteins used for therapeutics and biosensors involve beta-sheet proteins such as antibodies. Accordingly, we explored the effect of several highly fluorinated amino acids on beta-sheet stability including (S)-2-amino-4,4,4-trifluorobutyric acid (Atb), (S)-5,5,5',5'-tetrafluoroleucine (Qfl), (S)-5,5,5,5',5',5'-hexafluoroleucine (Hfl), and (S)-pentafluorophenylalanine (Pff). Nine proteins based on the protein G B1 domain I6A T44A mutant (GB1) with various amino acids at the solvent exposed guest position 53 in the internal strand 4 were synthesized, purified, and investigated by thermal denaturation monitored by circular dichroism spectroscopy. Based on the thermal denaturation data, GB1 stability is affected by the amino acid at the guest position 53. Apparently, introducing fluorine results in more stable GB1 mutants (Pff > Phe, Hfl > Qfl > Leu, Atb > Abu). In particular, GB1 becomes more stable upon introducing fluorines by up to 0.35 kcal x mol(-1) x residue(-1). Overall, these results suggest that fluoro-amino acids may be worthwhile building blocks to explore for stabilizing beta-sheet proteins, which are especially important for biotechnologies such as protein therapeutics and biosensors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom