z-logo
open-access-imgOpen Access
Nature of Amide Carbonyl−Carbonyl Interactions in Proteins
Author(s) -
Amit Choudhary,
Deepa Gandla,
Grant R. Krow,
Ronald T. Raines
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja901188y
Subject(s) - chemistry , delocalized electron , antibonding molecular orbital , lone pair , amide , ab initio , peptide bond , crystallography , computational chemistry , conjugated system , non covalent interactions , peptide , stereochemistry , hydrogen bond , molecule , organic chemistry , electron , atomic orbital , biochemistry , physics , quantum mechanics , polymer
Noncovalent interactions define and modulate biomolecular structure, function, and dynamics. In many protein secondary structures, an intimate interaction exists between adjacent carbonyl groups of the main-chain amide bonds. As this short contact contributes to the energetics of protein conformational stability as well as protein-ligand interactions, understanding its nature is crucial. The intimacy of the carbonyl groups could arise from a charge-charge or dipole-dipole interaction, or n-->pi * electronic delocalization. This last putative origin, which is reminiscent of the Burgi-Dunitz trajectory, involves delocalization of the lone pairs (n) of the oxygen (O(i-1)) of a peptide bond over the antibonding orbital (pi*) of the carbonyl group (C(i)=O(i)) of the subsequent peptide bond. By installing isosteric chemical substituents in a peptidic model system and using NMR spectroscopy, X-ray diffraction analysis, and ab initio calculations to analyze the consequences, the intimate interaction between adjacent carbonyl groups is shown to arise primarily from n-->pi* electronic delocalization. This finding has implications for organic, biological, and medicinal chemistry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom