z-logo
open-access-imgOpen Access
Structural Analysis of an Open Active Site Conformation of Nonheme Iron Halogenase CytC3
Author(s) -
Cintyu Wong,
Danica Galonić Fujimori,
Christopher T. Walsh,
Catherine L. Drennan
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja8097355
Subject(s) - chemistry , hydroxylation , active site , chloride , catalysis , enzyme , stereochemistry , streptomyces , halogenation , halide , combinatorial chemistry , organic chemistry , biology , bacteria , genetics
CytC3, a member of the recently discovered class of nonheme Fe(II) and alpha-ketoglutarate (alphaKG)-dependent halogenases, catalyzes the double chlorination of L-2-aminobutyric acid (Aba) to produce a known Streptomyces antibiotic, gamma,gamma-dichloroaminobutyrate. Unlike the majority of the Fe(II)-alphaKG-dependent enzymes that catalyze hydroxylation reactions, halogenases catalyze a transfer of halides. To examine the important enzymatic features that discriminate between chlorination and hydroxylation, the crystal structures of CytC3 both with and without alphaKG/Fe(II) have been solved to 2.2 A resolution. These structures capture CytC3 in an open active site conformation, in which no chloride is bound to iron. Comparison of the open conformation of CytC3 with the closed conformation of another nonheme iron halogenase, SyrB2, suggests two important criteria for creating an enzyme-bound Fe-Cl catalyst: (1) the presence of a hydrogen-bonding network between the chloride and surrounding residues, and (2) the presence of a hydrophobic pocket in which the chloride resides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom