Pick-and-Place Using Chemically Actuated Microgrippers
Author(s) -
Jatinder Singh,
Timothy G. Leong,
Noy Bassik,
Bryan R. Benson,
Matthew T. Jochmans,
David H. Gracias
Publication year - 2008
Publication title -
journal of the american chemical society
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja806961p
Subject(s) - grippers , chemistry , smt placement equipment , nanotechnology , microelectromechanical systems , mechanical engineering , robot , computer science , materials science , artificial intelligence , engineering
In this communication, we demonstrate the concept of single-use, chemically triggered, reversible tools in the form of mobile grippers that can be used to manipulate micro-objects. Both the closing and opening of the mobile grippers are triggered by chemicals, namely acetic acid (CH(3)COOH) and hydrogen peroxide (H(2)O(2)), respectively. The grippers close and open en masse based on chemically triggered, mechanical property changes within trilayer joints patterned within the gripper, and no external power is needed for operation. We describe the actuation of the gripper using a multilayer thin film model and demonstrate the utility of the gripper by picking-and-placing 200 microm diameter tubes and beads. Our pick-and-place microgripper is a first step toward the development of functional Micro Chemo-Mechanical Systems (MCMS), which are actuated by chemistry as opposed to electricity [as in Micro Electro-Mechanical Systems (MEMS)].
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom