z-logo
open-access-imgOpen Access
Molecular Rotor Measures Viscosity of Live Cells via Fluorescence Lifetime Imaging
Author(s) -
Marina K. Kuimova,
Gökhan Yahioglu,
James A. Levitt,
Klaus Suhling
Publication year - 2008
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja800570d
Subject(s) - microviscosity , chemistry , intracellular , viscosity , fluorescence , fluorophore , biophysics , fluorescence lifetime imaging microscopy , fluorescence anisotropy , cytoplasm , photochemistry , analytical chemistry (journal) , biochemistry , membrane , optics , chromatography , thermodynamics , physics , biology
The fluorescence intensity and lifetime of the 4,4'-difluoro-4-bora-5-(p-oxoalkyl)phenyl-3a,4a-diaza-s-indacene (1) show a strong correlation with the viscosity of the medium due to the viscosity-dependent twisting of the 5-phenyl group, which gives access to the dark nonemissive excited state. We propose a sensitive and versatile method for measuring the local microviscosity in biological systems, based on the determination of the fluorescence lifetime of 1. Fluorescence lifetime imaging (FLIM) performed on live cells incubated with 1 demonstrates the distinct intracellular lifetime of the molecular rotor of 1.6 +/- 0.2 ns corresponding to the intracellular viscosity of ca. 140 cP. Time-resolved fluorescence anisotropy of 1 in cells confirms insignificant binding of the fluorophore. The viscosity value obtained in the present study is considerably higher than that of water and of cellular cytoplasm. The high viscosity of intracellular compartments is likely to play an important role in vital intracellular processes, including the rate of diffusion of reactive oxygen species, causing programmed cell destruction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom