Enantioselective Synthesis of α-Quaternary Mannich Adducts by Palladium-Catalyzed Allylic Alkylation: Total Synthesis of (+)-Sibirinine
Author(s) -
Yoshitaka Numajiri,
Beau P. Pritchett,
Koji Chiyoda,
Brian M. Stoltz
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja512124c
Subject(s) - enantioselective synthesis , chemistry , tsuji–trost reaction , alkylation , mannich reaction , total synthesis , catalysis , allylic rearrangement , ketone , organic chemistry , palladium , combinatorial chemistry
A catalytic enantioselective method for the synthesis of α-quaternary Mannich-type products is reported. The two-step sequence of (1) Mannich reaction followed by (2) decarboxylative enantioselective allylic alkylation serves as a novel strategy to in effect access asymmetric Mannich-type products of "thermodynamic" enolates of substrates possessing additional enolizable positions and acidic protons. Palladium-catalyzed decarboxylative allylic alkylation enables the enantioselective synthesis of five-, six-, and seven-membered ketone, lactam, and other heterocyclic systems. The mild reaction conditions are notable given the acidic free N-H groups and high functional group tolerance in each of the substrates. The utility of this method is highlighted in the first total synthesis of (+)-sibirinine.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom