Mechanism of the Reduction of the Native Intermediate in the Multicopper Oxidases: Insights into Rapid Intramolecular Electron Transfer in Turnover
Author(s) -
David E. Heppner,
Christian H. Kjaergaard,
Edward I. Solomon
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja509150j
Subject(s) - chemistry , intramolecular force , electron transfer , mechanism (biology) , reduction (mathematics) , multicopper oxidase , stereochemistry , photochemistry , biochemistry , enzyme , philosophy , geometry , mathematics , epistemology , laccase
The multicopper oxidases (MCOs) are the family of enzymes that catalyze the 4-electron reduction of O2 to H2O coupled to the four 1-electron oxidations of substrate. In the catalytic cycle electrons are transferred intramolecularly over ∼13 Å from a Type 1 (T1) Cu site that accepts electrons from substrate to a trinuclear Cu cluster (TNC) where O2 is reduced to H2O at rapid rates consistent with turnover (560 s(-1)). The oxygen reduction mechanism for the MCOs is well-characterized, whereas the rereduction is less understood. Our initial study of Rhus vernicifera Laccase (Heppner et al. J. Am. Chem. Soc. 2013, 135, 12212) experimentally established that the native intermediate (NI), the species formed upon O-O bond cleavage, is reduced with an IET rate >700 s(-1) and is the catalytically relevant fully oxidized form of the enzyme, rather than the resting state. In this report, we present kinetic and spectroscopic results coupled to DFT calculations that evaluate the mechanism of the 3 e(-)/3 H(+) reduction of NI, where all three catalytically relevant intramolecular electron transfer (IET) steps are rapid and involve three different structural changes. These three rapid IET processes reflect the sophisticated mechanistic control of the TNC to enable rapid turnover. All three IET processes are fast due to the associated protonation of the bridging oxo and hydroxo ligands, generated by O-O cleavage, to form water products that are extruded from the TNC upon full reduction, thereby defining a unifying mechanism for oxygen reduction and rapid IET by the TNC in the catalytic cycle of the MCOs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom