z-logo
open-access-imgOpen Access
Quantification of Electrophilic Activation by Hydrogen-Bonding Organocatalysts
Author(s) -
Ryan R. Walvoord,
Phuong Nguyen Hoai Huynh,
Marisa C. Kozlowski
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja5086244
Subject(s) - chemistry , catalysis , reactivity (psychology) , electrophile , ketone , friedel–crafts reaction , photochemistry , homo/lumo , substrate (aquarium) , organic chemistry , molecule , medicine , oceanography , alternative medicine , pathology , geology
A spectrophotometric sensor is described that provides a useful assessment of the LUMO-lowering provided by catalysts in Diels-Alder and Friedel-Crafts reactions. A broad range of 33 hydrogen-bonding catalysts was assessed with the sensor, and the relative rates in the above reactions spanned 5 orders of magnitude as determined via (1)H- and (2)H NMR spectroscopic measurements, respectively. The differences between the maximum wavelength shift of the sensor with and without catalyst (Δλ(max)(-1)) were found to correlate linearly with ln(k(rel)) values for both reactions, even though the substrate feature that interacts with the catalyst differs significantly (ketone vs nitro). The sensor provides an assessment of both the inherent reactivity of a catalyst architecture as well as the sensitivity of the reaction to changes within an architecture. In contrast, catalyst pK(a) values are a poor measure of reactivity, although correlations have been identified within catalyst classes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom