Fundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules
Author(s) -
Henry D. Herce,
Angel E. Garcı́a,
M. Cristina Cardoso
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja507790z
Subject(s) - chemistry , endocytic cycle , cytosol , membrane , biophysics , cell membrane , cell , small molecule , biochemistry , endocytosis , enzyme , biology
Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of computational results and in vitro and live-cell experimental evidence reveals an efficient energy-independent translocation mechanism for arginine-rich molecules. This mechanism unveils the essential role of guanidinium groups and two universal cell components: fatty acids and the cell membrane pH gradient. Deprotonated fatty acids in contact with the cell exterior interact with guanidinium groups, leading to a transient membrane channel that facilitates the transport of arginine-rich peptides toward the cell interior. On the cytosolic side, the fatty acids become protonated, releasing the peptides and resealing the channel. This fundamental mechanism appears to be universal across cells from different species and kingdoms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom