z-logo
open-access-imgOpen Access
Enantioselective Total Syntheses of Citrinadins A and B. Stereochemical Revision of Their Assigned Structures
Author(s) -
Zhiguo Bian,
Christopher C. Marvin,
Martin Pettersson,
Stephen F. Martin
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja5074646
Subject(s) - stereocenter , chemistry , enantioselective synthesis , stereochemistry , stereoselectivity , total synthesis , pyridinium , sequence (biology) , indole test , ring (chemistry) , combinatorial chemistry , organic chemistry , catalysis , biochemistry
The concise, enantioselective total syntheses of (-)-citrinadin A and (+)-citrinadin B in a total of only 20 and 21 steps, respectively, from commercially available starting materials are described. Our strategy, which minimizes refunctionalization and protection/deprotection operations, features the highly diastereoselective, vinylogous Mannich addition of a dienolate to a chiral pyridinium salt to set the first chiral center. The absolute stereochemistry of this key center was then relayed by a sequence of substrate-controlled reactions, including a highly stereoselective epoxidation/ring opening sequence and an oxidative rearrangement of an indole to furnish a spirooxindole to establish the remaining stereocenters in the pentacyclic core of the citrinadins. An early stage intermediate in the synthesis of (-)-citrinadin A was deoxygenated to generate a dehydroxy compound that was elaborated into (+)-citrinadin B by a sequence of reaction identical to those used to prepare (-)-citrinadin A. These concise syntheses of (-)-citrinadin A and (+)-citrinadin B led to a revision of their stereochemical structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom