Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning
Author(s) -
Emeline BarbetMassin,
Andrew J. Pell,
Joren Sebastian Retel,
Loren B. Andreas,
Kristaps Jaudzems,
W. Trent Franks,
Andrew J. Nieuwkoop,
Matthias Hiller,
Victoria Ann Higman,
Paul Guerry,
Andrea Bertarello,
Michael J. Knight,
Michèle Felletti,
Tanguy Le Marchand,
Svetlana Kotelovica,
Ināra Akopjana,
Kaspars Tārs,
Monica Stoppini,
Vittorio Bellotti,
Martino Bolognesi,
Stéfano Ricagno,
James J. Chou,
Robert G. Griffin,
Hartmut Oschkinat,
Anne Lesage,
Lyndon Emsley,
Torsten Herrmann,
Guido Pintacuda
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja507382j
Subject(s) - chemistry , magic angle spinning , spinning , microcrystalline , solid state nuclear magnetic resonance , amide , nuclear magnetic resonance spectroscopy , resonance (particle physics) , nmr spectra database , nuclear magnetic resonance , spectral line , analytical chemistry (journal) , crystallography , atomic physics , stereochemistry , physics , chromatography , organic chemistry , astronomy , polymer chemistry
Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom