Remarkable Pressure Responses of Metal–Organic Frameworks: Proton Transfer and Linker Coiling in Zinc Alkyl Gates
Author(s) -
Aurélie U. Ortiz,
Anne Boutin,
Kevin J. Gag,
Abraham Clearfield,
FrançoisXavier Coudert
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja5060059
Subject(s) - chemistry , alkyl , phosphonate , linker , proton , zinc , molecule , metal , compressibility , lanthanide , metal organic framework , crystallography , chemical physics , thermodynamics , organic chemistry , ion , physics , adsorption , quantum mechanics , computer science , operating system
Metal-organic frameworks demonstrate a wide variety of behavior in their response to pressure, which can be classified in a rather limited list of categories, including anomalous elastic behavior (e.g., negative linear compressibility, NLC), transitions between crystalline phases, and amorphization. Very few of these mechanisms involve bond rearrangement. Here, we report two novel piezo-mechanical responses of metal-organic frameworks, observed under moderate pressure in two materials of the zinc alkyl gate (ZAG) family. Both materials exhibit NLC at high pressure, due to a structural transition involving a reversible proton transfer between an included water molecule and the linker's phosphonate group. In addition, the 6-carbon alkyl chain of ZAG-6 exhibits a coiling transition under pressure. These phenomena are revealed by combining high-pressure single-crystal X-ray crystallography and quantum mechanical calculations. They represent novel pressure responses for metal-organic frameworks, and pressure-induced proton transfer is a very rare phenomenon in materials in general.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom