Rational Design of a Second Generation Catalyst for Preparation of Allylsilanes Using the Silyl-Heck Reaction
Author(s) -
Jesse R. McAtee,
Glenn P. A. Yap,
Donald A. Watson
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja505446y
Subject(s) - chemistry , alkene , palladium , ligand (biochemistry) , silylation , phosphine , isomerization , catalysis , oxidative addition , heck reaction , steric effects , rational design , combinatorial chemistry , organic chemistry , medicinal chemistry , nanotechnology , biochemistry , materials science , receptor
Using rational ligand design, we have developed of a second-generation ligand, bis(3,5-di-tert-butylphenyl)(tert-butyl)phosphine, for the preparation of allylsilanes using the palladium-catalyzed silyl-Heck reaction. This new ligand provides nearly complete suppression of starting material alkene isomerization that was observed with our first-generation catalyst, providing vastly improved yields of allylsilanes from simple alkene starting materials. The studies quantifying the electronic and steric properties of the new ligand are described. Finally, we report an X-ray crystal structure of a palladium complex resulting from the oxidative addition of Me3SiI using an analogous ligand that provides significant insight into the nature of the catalytic system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom