z-logo
open-access-imgOpen Access
Photoinitiated Oxidative Addition of CF3I to Gold(I) and Facile Aryl-CF3 Reductive Elimination
Author(s) -
Matthew S. Winston,
William Wolf,
F. Dean Toste
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja503974x
Subject(s) - reductive elimination , chemistry , oxidative addition , aryl , phosphine , medicinal chemistry , dissociation (chemistry) , aryl halide , photochemistry , oxidative phosphorylation , organic chemistry , catalysis , alkyl , biochemistry
Herein we report the mechanism of oxidative addition of CF3I to Au(I), and remarkably fast Caryl-CF3 bond reductive elimination from Au(III) cations. CF3I undergoes a fast, formal oxidative addition to R3PAuR' (R = Cy, R' = 3,5-F2-C6H4, 4-F-C6H4, C6H5, 4-Me-C6H4, 4-MeO-C6H4, Me; R = Ph, R' = 4-F-C6H4, 4-Me-C6H4). When R' = aryl, complexes of the type R3PAu(aryl)(CF3)I can be isolated and characterized. Mechanistic studies suggest that near-ultraviolet light (λmax = 313 nm) photoinitiates a radical chain reaction by exciting CF3I. Complexes supported by PPh3 undergo reversible phosphine dissociation at 110 °C to generate a three-coordinate intermediate that undergoes slow reductive elimination. These processes are quantitative and heavily favor Caryl-I reductive elimination over Caryl-CF3 reductive elimination. Silver-mediated halide abstraction from all complexes of the type R3PAu(aryl)(CF3)I results in quantitative formation of Ar-CF3 in less than 1 min at temperatures as low as -10 °C.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom