z-logo
open-access-imgOpen Access
Photonic Crystal Kinase Biosensor
Author(s) -
Kelsey I. MacConaghy,
Christopher I. Geary,
Joel L. Kaar,
Mark P. Stoykovich
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja5031062
Subject(s) - chemistry , biosensor , kinase , diffraction , polymer , biophysics , ionic bonding , self healing hydrogels , protein kinase a , nanotechnology , biochemistry , materials science , optics , polymer chemistry , ion , organic chemistry , physics , biology
We have developed a novel biosensor for kinases that is based on a kinase-responsive polymer hydrogel, which enables label-free screening of kinase activity via changes in optical properties. The hydrogel is specifically designed to swell reversibly upon phosphorylation of a target peptide, triggering a change in optical diffraction from a crystalline colloidal array of particles impregnated into the hydrogel. Diffraction measurements, and charge staining, confirmed the responsive nature of the hydrogel. Moreover, the change in diffraction of the hydrogel upon treatment with kinase exhibited a time- and dose-dependent response. A theoretical model for ionic polymer networks describes the observed optical response well and can be used to quantify the extent of phosphorylation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom