z-logo
open-access-imgOpen Access
Multicolor Live-Cell Chemical Imaging by Isotopically Edited Alkyne Vibrational Palette
Author(s) -
Zhixing Chen,
Daniel W. Paley⧓,
Lu Wei,
Andrew L. Weisman,
Richard A. Friesner,
Colin Nuckolls,
Wei Min
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja502706q
Subject(s) - alkyne , chemistry , biomolecule , isotopologue , raman spectroscopy , chemical imaging , palette (painting) , microscopy , isotopic labeling , molecule , photochemistry , optics , organic chemistry , physics , biochemistry , remote sensing , computer science , hyperspectral imaging , operating system , geology , catalysis
Vibrational imaging such as Raman microscopy is a powerful technique for visualizing a variety of molecules in live cells and tissues with chemical contrast. Going beyond the conventional label-free modality, recent advance of coupling alkyne vibrational tags with stimulated Raman scattering microscopy paves the way for imaging a wide spectrum of alkyne-labeled small biomolecules with superb sensitivity, specificity, resolution, biocompatibility, and minimal perturbation. Unfortunately, the currently available alkyne tag only processes a single vibrational "color", which prohibits multiplex chemical imaging of small molecules in a way that is being routinely practiced in fluorescence microscopy. Herein we develop a three-color vibrational palette of alkyne tags using a (13)C-based isotopic editing strategy. We first synthesized (13)C isotopologues of EdU, a DNA metabolic reporter, by using the newly developed alkyne cross-metathesis reaction. Consistent with theoretical predictions, the mono-(13)C ((13)C≡(12)C) and bis-(13)C ((13)C≡(13)C) labeled alkyne isotopologues display Raman peaks that are red-shifted and spectrally resolved from the originally unlabeled ((12)C≡(12)C) alkynyl probe. We further demonstrated three-color chemical imaging of nascent DNA, RNA, and newly uptaken fatty-acid in live mammalian cells with a simultaneous treatment of three different isotopically edited alkynyl metabolic reporters. The alkyne vibrational palette presented here thus opens up multicolor imaging of small biomolecules, enlightening a new dimension of chemical imaging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom