z-logo
open-access-imgOpen Access
Design of Spiro[2.3]hex-1-ene, a Genetically Encodable Double-Strained Alkene for Superfast Photoclick Chemistry
Author(s) -
Zhipeng Yu,
Qing Lin
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja5012542
Subject(s) - bioorthogonal chemistry , alkene , chemistry , ene reaction , steric effects , cycloaddition , stereochemistry , click chemistry , ring strain , ring (chemistry) , combinatorial chemistry , organic chemistry , catalysis
Reactive yet stable alkene reporters offer a facile route to studying fast biological processes via the cycloaddition-based bioorthogonal reactions. Here, we report the design and synthesis of a strained spirocyclic alkene, spiro[2.3]hex-1-ene (Sph), for an accelerated photoclick chemistry, and its site-specific introduction into proteins via amber codon suppression using the wild-type pyrrolysyl-tRNA synthetase/tRNA(CUA) pair. Because of its high ring strain and reduced steric hindrance, Sph exhibited fast reaction kinetics (k2 up to 34,000 M(-1) s(-1)) in the photoclick chemistry and afforded rapid (<10 s) bioorthogonal protein labeling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom