z-logo
open-access-imgOpen Access
An Efficient, Practical, and Enantioselective Method for Synthesis of Homoallenylamides Catalyzed by an Aminoalcohol-Derived, Boron-Based Catalyst
Author(s) -
Hao Wu,
Fredrik Hæffner,
Amir H. Hoveyda
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja500374p
Subject(s) - chemistry , enantioselective synthesis , catalysis , propargyl , reagent , yield (engineering) , combinatorial chemistry , enantiomeric excess , aryl , organic chemistry , allene , aldimine , anhydrous , alkyl , materials science , metallurgy
A practical catalytic method for enantioselective addition of an allene unit to aldimines is disclosed. Transformations are promoted by an in-situ-generated B-based catalyst that is derived from a simple, robust, and readily accessible (in multigram quantities) chiral aminoalcohol. A range of aryl-, heteroaryl-, and alkyl-substituted homoallenylamides can be obtained in 66-91% yield and 84:16 to >99:1 enantiomeric ratio through reactions performed at ambient temperature and in the presence of 0.1-3.0 mol% of the chiral catalyst and a commercially available allenylboron reagent. The catalytic protocol does not require strict anhydrous conditions, can be performed on gram scale, and promotes highly selective addition of an allenyl unit (vs a propargyl group). The utility of the approach is demonstrated through development of succinct approaches to syntheses of anisomycin and epi-cytoxazone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom