z-logo
open-access-imgOpen Access
Turning Gold into “Diamond”: A Family of Hexagonal Diamond-Type Au-Frameworks Interconnected by Triangular Clusters in the Sr–Al–Au System
Author(s) -
Andriy Palasyuk,
Yuri Grin,
Gordon J. Miller
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja411150e
Subject(s) - chemistry , diamond , hexagonal crystal system , crystallography , nanotechnology , organic chemistry , materials science
A new homologous series of intermetallic compounds containing three-dimensional (3-d) tetrahedral frameworks of gold atoms, akin to hexagonal diamond, have been discovered in four related Sr-Au-Al systems: (I) hexagonal SrAl3-xAu4+x (0.06(1) ≤ x ≤ 0.46(1), P62m, Z = 3, a = 8.633(1)-8.664(1) Å, c = 7.083(2)-7.107(1) Å); (II) orthorhombic SrAl2-yAu5+y (y ≤ 0.05(1); Pnma, Z = 4, a = 8.942(1) Å, b = 7.2320(4) Å, c = 9.918(1) Å); (III) Sr2Al2-zAu7+z (z = 0.32(2); C2/c, Z = 4, a = 14.956(4) Å, b = 8.564(2) Å, c = 8.682(1) Å, β = 123.86(1)°); and (IV) rhombohedral Sr2Al3-wAu6+w (w ≈ 0.18(1); R3c, Z = 6, a = 8.448(1) Å, c = 21.735(4) Å). These remarkable compounds were obtained by fusion of the pure elements and were characterized by X-ray diffraction and electronic structure calculations. Phase I shows a narrow phase width and adopts the Ba3Ag14.6Al6.4-type structure; phase IV is isostructural with Ba2Au6Zn3, whereas phases II and III represent new structure types. This novel series can be formulated as Srx[M3]1-xAu2, in which [M3] (= [Al3] or [Al2Au]) triangles replace some Sr atoms in the hexagonal prismatic-like cavities of the Au network. The [M3] triangles are either isolated or interconnected into zigzag chains or nets. According to tight-binding electronic structure calculations, the greatest overlap populations belong to the Al-Au bonds, whereas Au-Au interactions have a substantial nonbonding region surrounding the calculated Fermi levels. QTAIM analysis of the electron density reveals charge transfer from Sr to the Al-Au framework in all four systems. A study of chemical bonding by means of the electron-localizability indicator indicates two- and three-center interactions within the anionic Al-Au framework.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom