z-logo
open-access-imgOpen Access
Increased Dynamic Effects in a Catalytically Compromised Variant ofEscherichia coliDihydrofolate Reductase
Author(s) -
J. Javier RuizPernía,
Louis Y. P. Luk,
Rafael García-Meseguer,
Sérgio Martí,
E. Joel Loveridge,
Iñaki Tuñón,
Vicent Moliner,
Rudolf K. Allemann
Publication year - 2013
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja410519h
Subject(s) - chemistry , dihydrofolate reductase , escherichia coli , enzyme , enterobacteriaceae , biochemistry , gene
Isotopic substitution ((15)N, (13)C, (2)H) of a catalytically compromised variant of Escherichia coli dihydrofolate reductase, EcDHFR-N23PP/S148A, has been used to investigate the effect of these mutations on catalysis. The reduction of the rate constant of the chemical step in the EcDHFR-N23PP/S148A catalyzed reaction is essentially a consequence of an increase of the quasi-classical free energy barrier and to a minor extent of an increased number of recrossing trajectories on the transition state dividing surface. Since the variant enzyme is less well set up to catalyze the reaction, a higher degree of active site reorganization is needed to reach the TS. Although millisecond active site motions are lost in the variant, there is greater flexibility on the femtosecond time scale. The "dynamic knockout" EcDHFR-N23PP/S148A is therefore a "dynamic knock-in" at the level of the chemical step, and the increased dynamic coupling to the chemical coordinate is in fact detrimental to catalysis. This finding is most likely applicable not just to hydrogen transfer in EcDHFR but also to other enzymatic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom