Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models
Author(s) -
Bettina G. Keller,
Andrei Yu Kobitski,
Andres Jäschke,
G. Ulrich Nienhaus,
Frank Noé
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja4098719
Subject(s) - chemistry , ribozyme , single molecule fret , förster resonance energy transfer , protein tertiary structure , folding (dsp implementation) , kinetics , protein secondary structure , chemical physics , crystallography , markov chain , biophysics , rna , fluorescence , physics , biochemistry , quantum mechanics , machine learning , biology , computer science , electrical engineering , gene , engineering
We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels-Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg(2+) concentrations. Structures generally tend to become more compact upon addition of Mg(2+). Some compact structures are observed to significantly depend on Mg(2+) concentration, suggesting a tertiary fold stabilized by Mg(2+) ions. One compact structure was observed to be Mg(2+)-independent, consistent with stabilization by tertiary Watson-Crick base pairing found in the folded Diels-Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom