Symmetry-Amplified J Splittings for Quadrupolar Spin Pairs: A Solid-State NMR Probe of Homoatomic Covalent Bonds
Author(s) -
Frédéric A. Perras,
David L. Bryce
Publication year - 2013
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja407138b
Subject(s) - chemistry , spins , covalent bond , j coupling , carbene , symmetry (geometry) , boron , molecule , reagent , spin (aerodynamics) , crystallography , molecular physics , chemical physics , computational chemistry , nuclear magnetic resonance spectroscopy , stereochemistry , condensed matter physics , physics , geometry , mathematics , organic chemistry , thermodynamics , catalysis , biochemistry
Chemically informative J couplings between pairs of quadrupolar nuclei in dimetallic and dimetalloid coordination motifs are measured using J-resolved solid-state NMR experiments. It is shown that the application of a double-quantum filter is necessary to observe the J splittings and that, under these conditions, only a simple doublet is expected. Interestingly, the splitting is amplified if the spins are magnetically equivalent, making it possible to measure highly precise J couplings and unambiguously probe the symmetry of the molecule. This is demonstrated experimentally by chemically breaking the symmetry about a pair of boron spins by reaction with an N-heterocyclic carbene to form a β-borylation reagent. The results show that the J coupling is a sensitive probe of bonding in diboron compounds and that the J values quantify the weakening of the B-B bond which occurs when forming an sp(2)-sp(3) diboron compound, which is relevant to their reactivity. Due to the prevalence of quadrupolar nuclei among transition metals, this work also provides a new approach to probe metal-metal bonding; results for Mn2(CO)10 are provided as an example.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom